Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.30.474453

ABSTRACT

Importance: The emergence of the highly contagious Omicron variant of SARS-CoV-2 and the findings of a significantly reduced neutralizing potency of sera from convalescent or vaccinated individuals imposes the study of cellular immunity to predict the degree of immune protection to the yet again new coronavirus. Design: Prospective monocentric observational study. Setting: Conducted between December 20-21 at the Santa Lucia Foundation IRCCS. Participants: 61 volunteers (Mean age 41.62, range 21-62; 38F/23M) with different vaccination and SARS-CoV-2 infection backgrounds donated 15 ml of blood. Of these donors, one had recently completed chemotherapy, and one was undergoing treatment with monoclonal antibodies; the others reported no known health issue. Main Outcome(s) and Measure(s): The outcomes were the measurement of T cell reactivity to the mutated regions of the Spike protein of the Omicron SARS-CoV-2 variant and the assessment of remaining T cell immunity to the spike protein by stimulation with peptide libraries. Results: Lymphocytes from freshly drawn blood samples were isolated and immediately tested for reactivity to the Spike protein of SARS-CoV-2. T cell responses to peptides covering the mutated regions in the Omicron variant were decreased by over 47% compared to the same regions of the ancestral vaccine strain. However, overall reactivity to the peptide library of the full-length protein was largely maintained (estimated 83%). No significant differences in loss of immune recognition were identified between groups of donors with different vaccination and/or infection histories. Conclusions and Relevance: We conclude that despite the mutations in the Spike protein, the SARS-CoV-2 Omicron variant is nonetheless recognized by the cellular component of the immune system. It is reasonable to assume that protection from hospitalization and severe disease is maintained.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.27.462006

ABSTRACT

Vaccination against SARS-CoV-2 infection has shown to be effective in preventing hospitalization for severe COVID-19. However, multiple reports of break-through infections and of waning antibody titers have raised concerns on the durability of the vaccine, and current discussions on vaccination strategies are centered on evaluating the opportunity of a third dose administration. Here, we monitored T cell responses to the Spike protein of SARS-CoV-2 in 71 healthy donors vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2) for up to 6 months after vaccination. We find that vaccination induces the development of a sustained anti-viral memory T cell response which includes both the CD4+ and the CD8+ lymphocyte subsets. These lymphocytes display markers of polyfunctionality, are fit for interaction with cognate cells, show features of memory stemness, and survive in significant numbers the physiological contraction of the immune response. Collectively, this data shows that vaccination with BNT162b2 elicits an immunologically competent and potentially long-lived SARS-CoV-2-specific T cell population. Understanding the immune responses to BNT162b2 provides insights on the immunological basis of the clinical efficacy of the current vaccination campaign and may instruct future vaccination strategies.


Subject(s)
Brain Stem Neoplasms , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL